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" Preface

This study.has been a very interesting and useful
learning experiencé, and I wish to convey my appreciation
to the Air Force Institute of Technology for requiring it
and to the Air Force Avionics Laboratory for the subject
matter. I found that not only is coherent combination of
lasers a formidable engineering task, it is equally as diffi-
cult to model the problem on paper. This is in part because
of the cross talk between the disciplines of Electrical
Engineering and Laser Physics, but the effort broadened
(pressure broadening I believe) my.understanding considerably.
I had hoped to be able to consider many more applica-

tions and in much greater detail, but there was, as ﬁsual,
no time. I believe the results, however, to be significant,
particularly in the array section where it was found that a
very large number of lasers is needed to eliminate multiple
lobes in the far field combined beam pattern. It was also
found that, given a good phase locked loop, there are few
major impediments to implementing a system of coherently
combined lasers. This in itself is a useful result. There
are however, many more questions to be answered, and I hope
that‘this study can be a useful starting point for further
efforts.

: I want to express a great deal of thanks to my advisor,
Dr. Stan Robinson, for his stimulating discussions. His

expertise and understanding of the subject were invaluable.




I also want to thank my readers Dr. Ted Luke and Dr. Don
Shankland for their very helpful comments. Last, but not
least, I wish to thank my typists, Mrs. Karen Landis and
Mrs. Rusti Gaudreau, who, .though they are still probably
wondering about all those funny little symbols, typed this

report with great skill and care.

Hal E. Hagemeier
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Definition of Symbols

Field amplitude, sometimes indexed, always
deterministic - .

Real and imaginary parts of ¢

Power ratio of threshold level to theoret1ca1
average side lobe level

Element spacings in an array, sometimes indexed,
may be deterministic or random

Energy of signal s(t)

Two dimensional Fourier transform on the variables
X,y

Frequency offset of ith laser

Constant frequency offset

Optical frequency

Scan frequency (rate)

Scale factor for linear frequency modulation

Peak spatial side lobe level with respect to the
main beam

Propagation constant, 2T (k is sometimes used
as an index) A

Length of laser array
Number of pulses
Array parameter
Number of lasers

Twice the height of the power spectral density
of white noise

Misalignment angle of optic axis for the ith laser
Phase factor from the Huygens-Fresnel principle
Logarithm (base 10) of L in wavelengths

Complex radius of curvature of gaussian spherical
wave

vii




R(1)

s(t)

Scale factor that determines the size of the scan
sector

Radius of curvature of the phase front of a
gaussian spherical wave

Correlation of a random process, may be subscripted
to indicate the particular process

Signal of interest

Fourier transform of s(t)

Temporal null-to-null pulse width
Temporal pulse recurrence interval
Coherence time of ¢ (t)

Field at output of laser

Spatial part of U,

Field at z,

Spatiai part of U,

Spot size of gaussian spherical wave
Spot size at z,

Spatial null-to-null pulse width
Spatial period

Argument for z transforms

Distance beam propagates in z direction (no rela-
tion to z transforms)

Phase angles

Confidence level of B

RMS bandwidth of s(t)

RMS duration of s(t) (no relatlon to the Dirac
delta function)

Difference between random variable and its mean

Beam angle in plane of array : ;

Attenuation due to o




Ui bR L% A

P
.

e MR A e Ml 42 ol AT

Phase angle, sometimes indexed, always deter-
ministic

Wavelength _
Doppler shift (frequency)

Variance of a random quantity which is determined
by a subscript, may be indexed

Time difference, t - t~

Phase angle, always a random process, sometimes
indexed

Characteristic function, sometimes subscripted

Ambiguity function (a two dimensional correlation)

" Angle off of array normal

Anguiar frequency
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Abstract

The coherent combination of several, single mode lasers
can produce a field similar to that of a mode-locked laser
but with more flexibility. The field for a quasi-monochro-
matic wave is considered a complex, coherence separable
random process. The ensemble mean and covariance are deter-
mined for the case of a temporally stabilized amplitude and
a temporal phase that with the appropriate assumptions is a
stationary, gaussian random process. Mean fields are used

throughoﬁt as the "signals" of interest. The Huygens-Fresnel

principle is used to investigate the field properties in the
Fraunhofer region for two cases. The first case is for N

beams superimposed with optical axes coincident. With appro-
priate assumptions, the performance of such a system is :
determined from the ambiguity function. Range measurement

i
precision is found to be proportional to /N°Af where Af is

the frequency difference between adjacent lasers. Velocity

measurement precision is found to be proportional to vVNAf3,

The second case is for N beams in a linear array. The far

field result is a scanning beam that in certain cases can

be steered. Aperiodic arrays are considered in an effort to
reduce grating lobes. An afray of about 1000 lasers is
needed for reasonably low side lobes. '

Some generalized results are presented for the effects
of misalignment of the lasers. In addition, the effects of
the random phases of the lasers are considered, and the time-
space dual nature of the ;esults ?s discussed.
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FIELD PROPERTIES OF MULTIPLE,

COHERENTLY COMBINED LASERS

I. Introduction

The uses of laser systems in industry, medicine, th
scientific community, and the military have been growivg
steadily in the past few years. Many applications havé»uti-
lized lasers thaf are scanned or pointed, have high peak
powers, and are modulated. The military, for example, is
developing lasers for possible use in ranging systems, target
designators, terrain mapping systems, and fire control sys-
tems. One of the types of laser used belongs to the general

class of mode-locked lasers.

Background

Mode-locking of an inhomogeneously broadened laser is
often done in ébplications that require very short pulses
and high peak powers. An inhomogeneously broadened laser
typically oscillates at several longitudinal modes. The
modes are at frequencies that are separated by an amount
that is inversely proportional to the length of the cavity
(Ref 33:348-352,365). Generally, these modes have random
pha§es with respect to each other (relative phases) and the
resultant total laser output power is proportional to the

number of modes. If, however, the individual modes maintain

a constant relative phase, the laser output power is




periodic with a éeriod proportional to the cavit& length, and
the output peak power is now proportional to the square of
the number of modes (Ref 39:256-262).- ‘

Unfortunately, since the pulse properties of the mode-
locked laser are determined essentially by the cavity length,
variations in pulse format are not easily accomﬁlished. To
obtain more flexibility, it seems reasonable.to consider
combining the outputs of several, single mode lasers. In
this casé, the phase, frequency, and amplitude of each laser
can be chosen to synthesize desirable combined beam proper-
- ties. If the frequency difference between any two lasers is
an integer multiple of a constant frequency offset and if
the fields are combined coherently, the reéult duplicates the
output of a mode-locked laser. 'Now, however, the frequency
offset can be varied over a much larger range than possible
with a mode-locked laser so that the pulse properties of the
combined beam can be chosen to meet more diverse require-
ments. The number of beams that are combined can also be
varied to change the oﬁtput pulse width and amplitude. In
addition, the lasers could be separated in space, i.e. placed
in an array of some sort, so that spatial pulse properties
exist analagous to the temporal properties of the mode-
locked laser. ‘

Analysis of the coherent combination problem has been
largely experimental and based only on deterministic models
of the individual 1asef outputs (Ref 1, 16, 17, 41). There

has also been some speculation on the applicability of a
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"phased array'" of lasers (Ref 7). Although these are neces-
sary first steps, a more complete analytical approach which
considers the instabilities of the various lasers and exam-
ines the resulting electromagnetic field distribution in

the far field is needed.

Problem

This study will focus on two of the many aspects of
this problem. First, the laser outputs will be modeled as
stochastic processes, and the space-time electric field
distribution of the far field will be determined. Second,
performance criteria for potential applications will be
determined and related not only to the characteristics of
the lasers (such cs frequency, phase, and spatial location),
but also to thc tetal number of lasers. The purpose of the
study is to examine the effects of practical quantities
such as coherence time, phase instabilities, number of
lasers, and poéition inaccuracies on the far field beam pat-
tern and to determine from a systems standpoint what types

of signals can then be synthesized.

" Scope and Assumptions

Although most of the calculations (except for specific
numerical examples) will be generally applicable to any
single mode laéer, the underlying application will be for
carbon dioxide (COz) lasers. In particular, the waveguide
CO, laser possesses certain desirable characteristics (Ref

9): it is homogeneously broadened and therefore oscillates

3 .




at one frequency; it is tuneable over a large frequency
bandwidth; as a CO, laser, it has a relatively long wave-
length; and there is a convenient atmospheric "window" at
the CO, wavelength of 10.6 microns. For simplicity, scalar
fields will be used instead of vector fields, and the field
descriptions will be classical (such as the treatments found
in Ref 12:37-50; 14:11-26; and 4:10-36). Furthermore, the
Huygens-Fresnel principle will be used to determine the far
field patterns (Ref 4:370-375; 12:33-70), and a perfect
channel (i.e. free space) will be assumed for propagation.
No attempt will be made to consider the problemé of actually
combining, phase locking, or controlling the phases of the
individual beams as these topics are addressea in.a related
study.

The desired result is a first and second moment descrip-
tion of the field as a random process. The ensemble mean
and covariance of the field will be considered as functions
of time and space. The mean of the field will be used as
the "signal'" of interest for determining performance cri-
teria and other results. The covariance will be a measure
"of how closely the actual results will approach the mean
results and is similar to the mutual coherence functions
described by other authors (Ref 4:499-518; 3:765; 21:235-
242, 27:359-399; 29:784-789).

Signal detection and estimation will not bg addressed
in detail; desirable signal formats will be those which pro-

duce workable patterns within the constraints of the




stochastic far field model. One measure of performance will
be the ambiguity function (Ref 6:59-105; 31:70-75) from which
the Cramer-Rao iower bounds on a given signal's measurement
precision of range and velocity can be determined. Another
performance measure will be the beam quality as a function

of laser position and phase variations. In addition, the

far field beam pattern itself as a function of various time
and space conditions will be -an indication of the desira-

bility of those conditions for certain applications.

Approach

The study is divided into three sections. The first

section presents a statistical model of the individual laser

modes. They are considered to Be complex, coherence separ-
able processes whose real and imaginary parts are identically
distributed. For practical cases, the mode amplitudes are
considered deterministic, and the randomness (laser insta-
bilities) appears in the phase of each beam. The duality of
time and space variations is shown as a general case when
several beams are combined. Far field results are deter-

mined and the effects of physical limitations are studied.

Finally, two general classes of combined beams are consid-
ered: the coaxial case, and the side-by-side array case.
The means and covariances are determined for both cases,
and some characteristics of the means are examined.

The second section considers the coaxial case in morev
detail. Coherent detection and a matched filter receiver
are assumed, and the ambiguity function of the combined

5
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field mean is determined. This shows explicitly the depend-
ence of the measurement precision of the signal as a function
of the number of lasers, the frequency differences between
lasers, and the relative phases of the lasers. Potential
applications for ranging, velocity measurement, and both are
considered in light of the performance criteria.

The third section presents analytical results for var-
ious linear arrays. The scanning characteristics of the
combined beam in the far field are studied. Pattern synthe-
sis and other beam properties are related to the number of
lasers and their position. In addition, aperiodic arrays
and the statistics of random arrays aré included in an

attempt to reduce high side lobes.




IT. Field Models

The optical fields used here will be described
classically. Most generally, the field for a monochromatic

linearly polarized wave may be written as

u(x,y,z,t) = A(x,y,z,t)cos(2nf t-¢(x,y,2,t))

where u(x,y,z,t) is a scalar function representing either an
electric or a magnetic field at position x, y, and z, and
time t; A is the amplitude of the wave; ¢ is the phase; and

f, is the optical frequency. Typically, u is written
u(x,y,z,t) = Re(U(x,y,z,t)exp(-j2nf,t))

where Re means '"the real part of'" and U(x,y,z,t) is a complex

function called the complex envelope of u(x,y,z,t), where

U(x,y,z,t) = A(x,y,z,t)exp(jo(x,y,2,t))

It is assumed ‘that U is a complex random process whose real
and imaginary parts are identically distributed and that z

is the direction of propagation. The field, then, at any 2z
is a function of x, y, and t and is designated by a numerical

subscript on U, for example
Ulx, ¥, 2,,t) = Uglx,y,t)

Odfput Field Model

U can now be written

U(x,y,t) = A(x,y,t)exp(jo(x,y,t))




where the amplitude and phase are slowly varying random
functions of time and space. For a single mode laser, the
amplitude is usually considered spatially coherent for a

given z and separable (Ref 3:768,770) so that

A(x,y,t) = Ag(x,y)A(L)

where Ag is the spatial dependence of the field amplitude
and is generally considered to be known. (The last section
will deal with results for x and y unknown.) A(t) is the
randomness of the amplitude due mostly to spontaneous emis-
sion (Ref 3:765; 21:236). 1If the laser output is considered
to be amplitude stabilized (Ref 2:32; 18:378; 28:2399; 29:784;
and 33:63), then A(t) becomes a:simple, non-random constant,
A, and the fluctuations of the laser light are primarily in
phase (the effect of a random Ag(x,y) will be considered
later). In addition, ¢(x,y,t) is also considered separable

so that

$(x,y,t) = ¢, (x,y) + ¢(t)

where ¢ is the non-random spatial dependence of the phase of
the field (the random case is treated later) and ¢(t) is the
randomness of the phase that accounts for the line broadening

of the laser. Therefore,

Ulx,y,t) = AlAg(x,y)exp(iog(x,y)) Yexp (5 (t))

= AU (x,y) exp(je(t)) (1)




It is assumed that the single mode lasers discussed here

operate in the TEM mode so that the spatial part of the

field, Ug(x,y), has the form of a gaussian spherical wave,

& v 2 9 P 5
Ut ) =2 § enp-3 GF - 2] 2

where\/% % is a normalizing factor for unit power flow (i.e.

{iIUSIdedy=1), R is the radius of the spherical wave phase

front, and w is the "spot size" of the gaussian amplitude
distribution (equivalent to the e”! point or v2 times the
standard deviation of a gaussian curve) (Ref 33:307).

Single Beam. From Eqs (1) and (2) for the output of a

single laser at some initial plane in front of the laser

output mirror,

1

U, ey, 0) =2 1 exp[-jf’g<x=+y2>]Aexp 5o+ (e)) (3

where q is the complex radius of curvature defined by

-y

1 A
"R Ine ®)

and ¢ has been added as an arbitrary phase ang}e. This phase
angle is considered a controllable parameter (it could be a
function of time) which will prove useful later on. A is
also assumed to be a controllable quantity.

The random phase of a free-running laser is ultimately

9
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a result of spontaneous emission and quantum noise. These
noise sources cause the phase to be a stochastic process
known as a randbm walk (Ref 18:;370-371; 34:181). It is well
known that such a process can be described as a Wiener-Lévy
process (sometimes called Brownian motion) that is zero mean,
gaussian, and non-stationary. Therefore, using known results

for the characteristic function of a gaussian random variable

(Ref 26:254,474-510),

E(U,(x,7,8)) = AU, G, 3)E [exp (3 (0+4(£)) 1]

AUos(x,y)exp[je - g;}gl} (5

where E( ) means to compute the ensemble mean or expected
value of the quantity in brackets, and o?(t) is the variance
of the random process ¢(t). If n(t) is a white noise pro-
cess that is zero mean, gaussian, and stationary then the

Weiner process,-¢(t) can be written (Ref 26:502),

6(t) = {F n(u)du

If o is the height of the power spectral density of n(t),

then the variance of ¢(t) is,
g2(t) = at : : (5a)

Therefore, the mean of U, in Eq (5) goes to zero as t

increases.

10




The correlation of Uo now becomes

E(U, (x,y, DU§(x",y7,£7))

=B (AU, (.30 exp (3 (64 (£)) VS, Gy Dexpl-3 (6+0.(6)) ]

=A%, (x, ) UFg (7, y E [exp {3 (0(0)-0.(£))) ]

2 -
=A2U°S(x,y)U§S(x’,y‘)exp o EASELE_l]
\

=A2U°S(x!y)U§S(x‘,y’)expL— %It-t’l] (6)

where ci is the variance of the gaussian random process

Ap(t,t™) = o(t) - ¢(t7) (7

2
correlation of U, in Eq (6) is stationary even though the

: 2
and - 2A = - %e-t7| (Ref 8:139; 26:476, 502). Now the

phase ¢(t) itself is not.

k Multi-Beam (Coaxial). Figure 1 (on the next page) shows

the case where N beams are combined coaxially. No consider-

s

{ -ation is given here to how the beams are combined. Since

this investigation was motivated by a mode-locked laser, each
] . mode can be modeled by a single mode laser with a frequency

i i

offset, so that a frequency term is added to the time depend-

ent part of Eq (3),

N-1 %
L Ay exp{j [21rfit+ei+¢>i(t))} (8)

-

U, (x,y,t) = Uy (x,y) i

11




o S i A o AN A N

A Rt e e S AR+ s e i .

N »
Single : Beam 1
Made Combining Combined Output
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Individuai
Output Beams

Fig. 1. Multi-Beams Combined Coaxially

where f; is the (controllable) frequency spacing between
adjacent spectral components of U,. The number of lasers, N,
that are used is only limited by the total bandwidth, zéé £4,
since the total bandwidth must be less than or equal to the
gain line width of the lasers being used. In general, fj
could have an additive random component, but this will be
ignored here for simplicity. It is also assumed that the
¢4(t) are statistically independent. Therefore, as with

Eqs (3) and (5), |

02

E(Ug(x,y,8))} = Upg(x,y) T A4 e,xp[j (2nfst+04) - _zz_(t)] )

12




where o;(t)=ait is the variance of the phase of the ith beam.
This might be called an '"open loop'" expression (similar to

Eq (5)) in that Aj, f;, and 65 are deterministic and unre-

lated to ¢i(t), i.e. there is no attempt to use measurement
dependent feedback to compensate for ¢i(t). The covaria ce

of U, is
Cov(U,,U;)
= BfU, (x, ¥, )05 (x", 3", t°)) - E(U, &x,¥, ) ) E(U¥z",y".t"))

= Upg(x, V)V, (x",77) Z Ai exp(jani(t-t’)) ' $
i

{exp[-%%lt-t‘l] - exp[:gkt+t‘)]} A (10)

L U e A NN

3 Although the covariance is non-stationary (since the mean of
¢(t) is non-stationary), the last term in Eq (10) goes to

zero quickly with t and t” and the covariance is quasi-

stationary. The mean of the field in Eq (9) behaves as in Eq
(5), and the covariance of U° in Eq (10) varies with the
statistics of ¢i(t) similar to Eq (6).

It is possible to continue using the non-stationary
statistics of the free-running phase ¢i(t) as is 'done 1in
Eqs (9) and (10). However, this will render the results
unusable for certain applications (notably the ambiguity
function in the next section). In addition, there is pres-
ently n6 known wa& to measure such field quantities directly.
Therefore, the following assumptions will be made: First,

the mean of the field (as opposed to the field intensity)
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will be considered the signal éf interest. Second, it will

be required that for the field of any laser to be observed

at any point in space or time, it must be coherently detected.
This necessitates a receiver structure as shown in FPig. 2.

In general, with no control, the phase of the detected signal
would be proportional to’¢i(t) - ¢,(t). Since both are
independent Wiener processes, their difference is also a
Wiener process. However, if the control is used, then the

E local oscillator phase ¢°(t) becomes a function of a measure-

ment made by the closed loop receiver. This measurement is, §

in turn, a function of the phase difference ¢;(t) - ¢,(t).

Therefore, ¢,(t) is no longer independent of ¢;(t). If the

Combiner

¢, (t)
Field i

to be > :> Detector ¢—=>Signal
Observed -

¢ (6

Local
Oscillator [< - Control

Fig. 2; Coherent.(Heterodyhe) Detection of a Field
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control apparatus is properly designed, the phase difference
¢i(t) - ¢,(t) will be a stationary process since the control
mechanism is trécking the temporal variations of the differ-
ential phases, i.e. ¢°(t) is nearly locked to ¢i(t). (This
assumption is often made implicity; see, for example, Ref 21:
237; 24:76,85.) 1In an absolute sense the two phases are
still proceeding in a random walk manner, however, the receiv-
er is only observing the difference between the two phases,
and this difference can be controlled arbitrarily well in
theory. It is not generally pcssible to make ¢,(t) precisely
equal to ¢i(t)Athereby making the observed signal totally
non-random. Thus, the receiver of Fig. 2 usually produces
non-exact or noisy phase control, wherein somé, but not all,
of the received field's instabilities are compensated. |

. For the multi-beam case in Eq (8), when the field is to
be observed, a receiver such as the one illustrated by Fig. 2
must be used to coherently detect the signal. To simplify
matters Eq (8) can be rewritten in terms of measureable field

quantities as

U,(x,y,t)
N-1 ,
=Ups (x,y) I, Ad exp{j(2mf t+0,+6, (£)-6,(t))}
U, (xy) Vi A; explj(2nfitto.+e7(E))) (11)
0s 4 i=0 i ¥ J_ 1 - Rl
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where ¢£(t) is defined to be the difference between the phase
of the reference laser, ¢,(t), and the phase of the ith laser.
If the phase of each laser is locked to the reference (simi-
lar to Fig. 2) then each of the'¢{(t) in Eq (11) can be
considered stationary. The use of a phase locked loop as a
control mechanism will invariably change the gaussian random

process ¢i(t) into a non-gaussian process ¢{(t) such that

s e A2
E(exp{j¢{(t)}) is not necessarily exp[- E%—] and the ¢£(t)

are not necessarily independent. Nevertheless, for the case
of a strong signal, i.e. for a phase locked loop with a high
signal-to—noiselratio, the ¢£(t) may be modeled as independ-
ent gaussian random processes (Ref 38:86-92).

Since all of the lasers are now locked temporally to the
phase of the local oscillator, the phase of the signal of
interest becomes the controlled phase differences between the
individual lasers and the local oscillator, and it is sta-
tionary. Hence the random walk nature of the phase of a
free-running laser (or lasers) will always be transparent as
far as any results derived from Eqs (8) or (11) are concerned.
By definition, then, Eq (8) will be understood to have ¢i(t)
(=¢£(t)) that are zero mean, stationary, independént, gaussian
random processes when observed in the required manner (Fig.2).

The mean of the field now becomes

' . o2
E(U,(x,y,t)) = U, (x,¥) E Aj exp{j{2nfit+ei} - :?J (12)

16




A e 1 1A A e 33 S e

where the variance, 0;, is a constant, and the covariance

of Uo becomes

Cov(Uo,U;) =¥ b, Pk (x* 5") g A% exp(j2nf; (t-t7))

{exp (-0]) (exp (Ro; (1)) -1)} (13)

where R¢i(r) is the correlation function of ¢i(t) and depends

e

only on T = t-t”. <

Now, o; is a measure of how well the ith
laser's phase is controlled. The degree of control necessary
can be calculated based on system requirements (this will be
done later). It should be noted that although Eqs (12) and
(13) are apparently statistics of the field of'interest, they
are technically -the statistics of the product of the field of

interest and the field of the local oscillator in the required

receiver. Since this assumption is always made, however,

explicit use of the local oscillator field will not be used.

Multi-Beam (Array). It may not be possible or desirable %

for physical or economic reasons to combine the individual
laser beams coaxially. 1In this case the lasers may be
aligned side-by-side in a one or two dimensional array simi-
lar to the antennas in a phased array radar (Ref 7:1103).
Figure 3 (on the next page) illustrates a rectangﬁlar afray
where Dik is the (center-to-center) spacing in the x direc-
tion, dik is the spacing in the y direction, and Dik and dik

are larger than the spot size, w, for all i and k. Now, as

shown in Eq (14) on the next page, the field becomes

&
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Fig. 3. Front View of Laser Array

el m=1
Uo(x,y,t) = iio kio ch(x+Dik,y+dik) Aik

exp{j (2nfy, t+0,, +6., (£))} (14)

where mn = N. The lasers could be arranged in a circle,
spiral, or any other geometrical shape, but for simplicity
the array is considered rectangular unless otherwise noted.
Essentially Eq (14) is the same as Eq (8) except that the
spatial term is included within the summation. Similarly,

5 the mean of the field is,
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E(Uo(x,y,t))-= i ﬁ Upg (2D, y4dy, ) Ay

exp,j(2nfikt+eik) - -%k] (15)

and the covariance of Uo is

Cov(Uy,U7) = I L U (etDyye, yHdy JUTs (74D, 7 Hdyy ) ALy

'{exp(jZWfik(t-t’)){exp(—oik](exp(R¢ik(t))-1)} (16)

Since the spatial and temporal parts of the field have been
assumed to be separate, the mean and covariance of the field
in Eqs (15) and (16) behave the same with respect to ¢ik(t)
as Eqs (12) and (15), i.e. only the spatial part of the field

has been changed.

Far Field Model

The fields given in Eqs (3), (8), and (14) are now prop-
agated through space by means of the well-known Huygens-
Fresnel principle (Ref 4:370-375; 12:40-46). Interactions of

the field with the atmosphere are not considered. In addi-

“tion, the Fraunhofer condition (Ref 4:382-386; 12:61) is

imposed since consideration is given here only for the far
field. (Since the space and time parts of the fields are
separate and the Huygens-Fresnel principle affects only the

spatial function, the temporal results that will be deter-

- mined, including the effects of the random process ¢i(t),

are unchanged by propagation through space. If desired, the

19

e




fields could be determined in the near field using the
Fresnel condition as in Ref 4;382-383., However, with little
loss of generaiity,.the'Fraunhofer condition is used here for
simplicity.) A sufficient condition for the Fraunhofer case
requires that

: x24y2) .
z >>ﬂ(x ) nax
A

17)

1

This may be a rather stringent condition, for example, in

the multi-beam array case where (X+Dik) and (y+dik)

max max

méy be on the order of 10 em. Then 1f X = 10.6u, z, must

be about 600 m to be an order of magnitude larger than

Cw(x%+y?)
A

max

After propagating a distance z, down the optical axis,

1
the field becomes

Soieg " Sk I
U, Gey,,0) = ok exp (s, |exp (s Gty |17 U, Gy )

exp -3 (L) Gox, vy, ) | axdy
1

P(x,,y,) %Y(UO(X.y.t)l (18)

where P(xl,yl) is just the phase factor-in froﬁt of the inte-

gral and éﬁ;y( ) is the two dimensional (spatial) Fourier

transform of U, (x,y,t) on x and y (Ref 12:61). Although U,

is considered a function of the rectangular coordinates

20




x, and y,, it is also a function of the spatial frequencies

f, and £ where f, = (x,)/(\z,) ahd' £, = )/ 0z,) in

keeping with the nature of the Fourier transform. In the
following discussions, U (x,y,t) is not considered to have

an explicit aperture function limiting its spatial extent at
the laser output. As noted in Ref 33:312-313, a conservative
aperture design for maximum power transmission makes the
aperture size about 3w (where.w is £he spot size of the beam).
The diffraction effects of this aperture on the beam profile
are completely negligible, hence there is no explicit depend-
ence of U, on the aperture. Any other desired aperture
function may be used and U, would become simply (though per-
haps tediously) the spatial convolution of the Fourier trans-
forms of Ugs(x,y) and the desired aperture.

Single Beam. If the field of Eq (3) is used in Eq (18),

the resulting far field for a single beam is

exp{j(6+¢ (t))} (19)

The mean of the far field becomes

u 2
E(U, (x,,y,,t)) = P(x,,yl)é?;y(Uos(x,y)] A exp[je-%f] (20)
ang the correlation becomes
E(U,(x,.y,.t)Uﬁ(x;.yj,t’)) - P(x,,yl)P*(x;,y;jU,S(x,,y,)

U¥g(x7,y1) A? exp(-o2+R¢ (1)) (21)
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where U, (x%,,y,) = ,Ay[UoS(x,y)). For completeness

Frey Vo5 x,7))

From Eq (20),

P(x,,5,) Py (Uys (x,3))

= _‘\/z q exP(jkzl)
N1

s T e~ 2 2
e I R TG ERTE ) e

and from Eq (21),
P(x),y IP*xT,y DU s (%, 50 (x],y7)
exp{j ;g%(<q+z,><x§+y§>-(q*+z,><x;2+y;=>)} (24)

The intensity of this single beam in the far field is

Il o= U1<Xl,y1.t)u?(x1syl’t)

2412 .
- 2(adb) 42 exp[— %%? (xf+y§)]

mw?z}

where from Eq (4) § has the form a + jb where




v

: z. (mw2)2 s
a = l( ) ) b =

“ma(wz,)?
(mw?)2+(Az ) *

(nw2)2+(xzr)=

and in the far field case R= z,. In Eq (25) the far field
intensity of the single beam is completely deterministic
since so far the randomness has been assumed to be only in

phase.

Multi-Beam (Coaxial). Again, the extension can be made

to sum N beams and the far field now shows some interesting
properties. U,(x,,y,,t) in this case can be determined
either by adding N versions of Eq (19) with the appropriate
addition of a frequency offset, fi’ or by applying the
Huygens-Fresnel principle to Eq (8). The same result is

obtained in either case,
exp{j (2, t+0,+¢, (£))} (26)
The mean of this far fiela is

E(U,(x,,y,,8)) = P(x,,y,)U, . (x,,7,) i A

o2
exp[j(anit+6i)- %?] (27)

The covariance is

Cov(U,,Uf) = P(x,,y,)P*(x;,y{)U,5(x,,y,)U¥s(x],y7) i A}

exp(j?nfi(t—t‘)]{exp(-o;)(exp(R¢i(T))-1)} (28)
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The intensity of this far field is not deterministic as it
was for a single beam in Eq (25) because of the cross terms

between beams. The mean of the intensity is

_2(a%*+b?) . Zmb, 2. 2 2 N=1 N:1
i e et v e ni | L Sl 2 L
? i$k

nE o  of
exp{J(Zﬂ(fi-fk)t+(9i-9 )) - —l—i——k}] (29)

k

This is a somewhat formidable expression, but some minor
siﬁplifying assumptions later will make it more useful.
Examination of the mean in Eq (27) yields some interest-
ing results. It is reasonable to assume that'although the
¢i(t) are independent, the c; are certainly similar if not
identical. This is because of the nature of the noise
sources producing the random phase fluctuations, because of
the similarity of the phase locked loops, and because all of
the lasers are assumed to be of the same type and construc-
tion. Also, since the Ai are controllable, they are assumed

to be the same for convenience. Therefore, Eq (27) becomes

E(Ul (x]l}'1't)) b P(XI.YI)U1S(X1,Y1)A exp[— _(%2_]

T exp(j(anit+ei)) (30)
i -

At this point some assumptions must be made for fi and
6; so that a closed form solution can be obtained. If the

frequencies between the lasers are all the same (as in a
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mode-locked laser) then fi = jAf where Af is the constant

frequency spacing. A similar assumption can be made for s
but the results will not be affected in any significant or
useful manner, so ei is considered zero. Now, Eq (30)

becomes
Bi0. G, .7, .00) = Pz, 00, & 7,0 A

e sin NmAft
exp |- + j(—=)2 Aft} S 31
XP[ 2 3¢ 2 Aan sin mAft 35
The (sin Nx)/(sin x) term in ﬁq (31) (the typical result of

a mode-locked laser as in Ref 39:131) is a pulse train in

time as shown in Fig. 4. The pulses have a null-to-null

sin(uN/2)
sin(y

N =8 (N = 8)

i 29 5,

N g " e =

Fig. 4 Plo* of sin(N 7)/sin(3) for N=8, w=2mAft
pulse.width of

% - ﬁ%—f . (32)

and a pulse recurrence interval (pulse rate) of

. ..1
= 33
TP Af e
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For the waveguide CO, laser (whose gain line width is about
700 MHz), NAf must be less than or equal to 700 MHZ. There-
fore the minimum achievable pulse width, tp, is about 3 nsec.
Tp depends on Af which is limited by the total number of
lasers used. The peak amplitude of the (sin Nx)/(sin x)
function at each Tp is just N as expected for coherent super-
position of N sources. The pulse width and pulse rate both
depend on N and Af which are assumed to be under the opera-
tor's control. Eq (31) also shows that the apparent frequency

of the field is changed to the optical frequency f; minus
(E%l)Af. Ref 41 reports experimental results of Eq (31).

If the assumptions for Eq (31) are applied to the inten-

sity then the series terms in Eq (29) become

z Ai = AN
1
and
i o} + of
§+§ AA, explj (Zw(fi-fk)t+(6i-6k))- -

= A% exp(-0?) £ £ exp(j(i-k)2naft)
itk

= A% exp(-0?){Z(N-i) (exp(j2rafti)+exp(-j2mafti))}
&L

= A% exp(-0®){2 T (N-i)cos(i(2maft))}
i

- AR exp(_oz) [1—COS N2wAft o N]

2 gin® qpft

- 2
= A? exv(-o® [ sin NnAft & N]
iy p( ) ( sin ﬂAft)
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(See Ref 22:104-105 for series sums.) Therefore,

2 (a%+b?) : [ 21h, 2. 2 2
E(I,) = &°—-2 exp|-=——5(x’+y2)|A
( 1 'ﬂ"WZZ§ ’ AZf 1 1
& P .2 81n NnAft 2]
[(1 exp(-02))N+ exp(-o )(_EIE_FK?E (34)

If 0%+, exp(-0?)+0 and E(I,) becomes a constant with respect
to time. This is equivalent to the result of a multi-mode
laser with no mode-locking. If 02+0, exp(-02)-+1 and E(I,)
is a pulse train, f.e. E(I )J+|E(U,(x,,7,£))|* for o2+0.
This is equivalent to a mode-locked laser outpﬁt.

The random phase fluctuations ¢i(t) simply cause the
amplitude of the mean of the field in Eq (3l)lto be reduced

by exp(— %; ).< As the variations in ¢i(t) become larger, the

amplitude of the pulses in the far field becomes smaller.
From this relation, the degree of control of the phases of
the lasers can be calculated. 1If the desired maximum atten-

uation is n, then
¢ = ST (35)

'For example, if n is desired to be no larger than 1 db (about
0.80) then ¢ must be about 0.67 rad. Similarly, for phase
control on the §rder of 1 rad, n is about 50%. Thé;effect of
¢i(t) becomes even clearer upon examination of'tbe total

power flow through the z = z, plane. The mean pover flow is

E (Power) = E[f?IUl(x,,yl,t)|2dx1dy,]




T TTR——

E(Power) = [/ E(I,)dx,dy,

Since Uos(x,y) is already normalized for unit power flow (Eq
(2)) and the Huygens-Fresnel principle merely changes the
distribution of the power, not the amount, the mean power is

sin NﬂAft)z]

= A2 = -o? -o?
E(Power) A? | (1-exp(-0?))N+exp (-0?) ( sin nmAft

Therefore, at t.= 0 (pulse peak) and for A = 1,

E(Power) = (l-exp(-02?))N+ exp(-o?)N? (36)

As 02+, E(ggwer) approaches N (incoherent superposition) and
as 0?+0, E(Power) approaches N? (coherent superposition).
It is also instructive to examine the behavior of the

covariance of U, in Eq (28). For o; =0,
Cov(U,,U;) « exp(-02) (exp(R$(1))-1) (37)

The general characteristics of R¢(1) are that R$(0) = o2 and
that R¢(t) = Re(-1), R$(0)2|R¢ ()|, and generally R¢(t)~0

as 1+ (since ¢i(t) are zero mean processes) (Ref 23:126;
26:336-338). At t = 0, the covariance of U, becomes the

variance, oa, of U and

oa « l-exp(-0?) (38)
By the Chebyshev inequality (Ref 26:150) the probability that

a random variable differs from its mean by more than an

amount ¢ is less than or equal to its variance divided by e?.
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Therefore,

Pr(|U,-E(U,)|2€)< -2 s

Now as o220, Pr(IUl-E(U1)|Ze].approaches zero, and U, is equal
to its mean with probability one, i.e. the smaller the vari-
ance of ¢i(t),the more closely the field approaches its mean
in Eq (27).

As T+», the two sample functions ¢(t) and ¢(t”) become
more and more uncorrelated. Typically, R¢(t) = 0 for all
TZTC where TC is called the coherence time of the process
o(t). For time differences Tt larger than the coherence
time, the phases at the two times are uncorrelated. From Eq

(37), -r>Tc implies that
Cov(U,,U;) =0

i.e. the coherence time of the phase ¢(t) is the coherence
time of the field U,. 1In general, Cov(U,,U;) will decrease
faster with T than will R¢(t) so that the effective coherence
time of U, may be less than that for ¢(t), however, this
is less true as o?+0 (Ref 13:66). The coherence length of
the field is related to the coherence time by the speed of
light. (A longer coherence time implies a greater coherence
distance.) Therefore, field points separated by times (dis-
tances) greater than the coherence time (distance) are
uﬁcorrelated. .

One further comment on Eq (27) concerns the beam waist.

Since the individual beams are added coaxially, the waist of
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the total beam propagates as thg waist of any single beam,

Therefore, the waist w, at a distance z, is

w, = 3 (39)

W

where w is the waist at z = z, (Eq (2)), and the far field
here implies z1>>3¥i (Ref 33:308). For example, if w = lmm
and A = 10.6u, then 2>>0.3 m which is a much less stringent
condition than the Fraunhofer condition of Eq (17). There-
fore, Eq (39) is essentially an equality when the Fraunhofer
condition is met.

Multi-Beam (Array). For this case, Eq (26) becomes

Up(070,8) = T2 PGxyY,) Foy (U ey, vy ) JAgy

exp{j (2rf e+, 46, (D)} (40)

where as in Eq (14), mm = N. As in Eq (22),
,g;{y(Uos(x+Dik,y+dik))

= F (Uys(x+Dy)) gajtvy(Uos(y+dik))
YAl o
= exp(5 %,y ) (U, ) exp (3 GEDy, dyy ] &, (0,6 )

g - B T R PRI T |
‘/; -J—wg exp{J.[E?(xl+yl)-1-;‘—2—;(Dikx1+diky1)]} (41)

where the shifting theorem of Fourier transforms has been

used (Ref 12:9; 27:65). Now Eq (40) can be written
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Ul(xlv}'l»t) = P(xx,Y1)U1s(x1,y1) N Aik
ik

expl] (2nE, £ 40, +6, (D)) (42)

This is identical to Eq (26), the field for the multi-beam
coaxial case, except for tg where to is dependent on time
and space,

dikyx

D.,x
tg = t+ KL 4
fik Az, fik A Z;

(43)
The mean of this field is similar to Eq (27)

E(U, (x,,y,,t)) = P(x,,y,)U o(x,,y,) i ﬁAik

" P
exp j(2ﬂfikts+eik)- i? ) (44)

and the covariance is similar to Eq (28)

Cov(U,,U7) = PGe, 3, JPRGe] ¥, 6 0oy 3 )W (5 y]) 3 2 ARy

exp(j2nfy, (t -t} {exp(-0;) %) (exp (R (1)) -1))}  (45)

where ts’is a function of t*, x{, and y ;. The mean of this

field's intensity is

2 2
B(1,) = 2@ (- 2B iaayhy ]
Z Z,

E(li i Ay exp{j(Zﬂfikts+eik+¢ik(t))}|2] (46)
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For the general two dimensional array this expression and Eq
(44) cannot be evaluated analytically without numerous assump-
tions. Eqs (44) and (45) are similar to Eqs (27) and (28)
respectively with t replaced by te Qualitatively, the two
dimensional array produces a pulse train in the far field
(there are still N different frequencies being added so the
results of Eq (31) hold for x, =y, = 0 in Eq (44)). However,
there will be some additional spatial modulation because of

Eq (43).

Generalized Results and Duality

Eq (42) is the key to some very general and interesting
results. In this equation, if fik’ Dik’ and dik are consid-

ered independent réndom variables, then Eq (44) becomes

B0, 6003,00) = POy )Uss () B 5 Ay emp(§oy)

0 (2mt)0n (21— 0 (21210 (1) (47)
f DYTXEy” Td Az,

where the ¢'s represent the characteristic functions of the

indicated random variables as functions of the indicated

arguments (i.e. ¢ (a) = E(exp(jox)) where x is a random

variable) and ¢¢ is evaluated at 1. Now if £, D, d, and ¢

are géussian (and stationary) with means fik' Dik' dik and

2

¢, and variances of, op, 03, and o}

p respectively, then Eq

(47) becomes (see Ref 26:159),
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4 X
E(U,) = P U,glexp ’%'[<2"F)2°§+(27’X§f>2"'12)“27'%‘1')2°§+°$]}

i'ﬁ Aik exp{j(2wfikts+9ik+¢ik)) (48)

It is alsc reasonable that gg * 0 (i.e. £ is completely

deterministic) and $ip = 0 so that

x e un
E(U,) =P Ulsexp{-%{(ZﬁA—z—l-)205+(2n-i-§—l-)20(21+0;]} L3 Ay
1 1

Z"Dikx1+2“diky1

exp[j(ZWfikr+ -+ eik)] (49)

Az, Az,
It should be noted that Eq (41) is still valid for D and d
random variables because the Fourier transform is taken term
by term and each Dik’ dik are just numbers (albeit part of

a sample space). In addition, D, d, and ¢(t) are considered
to have identical variances for each i, k as was assumed for
Eq (30).

Now, Eq (49) is a useful general result. If i = k =
Op ™ Og = Dy = dik = fik = 0 the result is the single beam

case represented by Eq (20) with Aoo = A and 600 = g, TIF

oy =g - Dik = dik = 0 the result is the coaxial case repre-
sented by Eq (30) with Aik = A, fik = fi’ and eik = ei 4 B
the double series collapses to a single series). If op =

o4 =0 the result is the general two dimensional array case
with D, and dsg deterministic as represented by Eq (44)

(with o4y = o¢).
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If k = 0, the result is the general one dimensional linear

array

E(Ul(xl,yl,t)) = P(xl,yl)Uls(xl,y])exp{-%[(Zﬁng)zoﬁ+o$]}

I A e e )] 50

The deterministic version of this field (OD = 0) will be
treated in the last section as well as the case for D a
random variable.

At this point, three sourtes of error in the far field
that are a result of the physical positioning of the laser
elements must be considered. These are errors in the element
location in x (fof a linear array, x and y for a planar
array), errors in the alignment of the individual optical
axes with each other, and errors in the element location in
z. The first problem can be considered in a manner completely
analagous to the results for the phase variance discussed
in connection with Eqs (34), (35), and (36). For the linear
array, each laser may have an error represented by the dif-
ference between its actual location and Di’ It is reasonable
‘that this error may be distributed in a gaussian manner so
that from Eq (50) the variance of that error is oﬁ. Now “p
can be determined as a function of x and z; so that the

result has a specified effect on E(U,). For e%ample, if

if e lm )= 10.6y, zl = 1 km, and op = 1 mm, then

2 . .
exp[-%(—7;§l)’oﬁ] = exp(-0.18) =0.84. TFor a specified
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amplitude reduction (for example 80% or about 1 db) and a

given range z,, the accuracy, 0p, with which the laser posi-

tions must be made can be found. The result is

op= G2o) z, FZTmn (51)

where n is the specified reduction and Op» %, %,, and A are

in meters. As z, increases, the necessary accuracy of the

1
location of the elements decreases. A similar result could
be derived for 0q OF a planar array with 9p and 04

As for Eq (37), the covariance of the field varies

with element location as

2mx,

2
Cov(Ul,U;)«exp{-(—;zf)zos)(exp[( )ZRD(x-x’))-l) (52)

Az
(Ref 26:159,476). But Ry(x-x") = E(DD")= E(D)E(D") = D}
since D and D” are independent (i.e. the location of one
element in no way influences the location of the next).

Since the element locations are uncorrelated, E(DD) = Df = o}
and Eq (52) becomes

Cov(U,,U{) « l-ex —(Zﬂxl)zo2 (52a)
L SR E TR

as .in the temporal case (although Eq (38) is a variance and
this is a covariance). Thus the results of Eq (49) indicate
the complete time-space duality of_this problem. The statis-

tical results are similar for instabilities in time or space




(i.e. pesitional errors), and the general result contains all

cases of interest,
The second physical positioning problem occurs when the
optical axes of the lasers are not parallel. In this case

Eq (14) becomes, for a linear array,
exp(j(anit+ei+¢i(t) +'%§ x sin oi)) (53)

where o4 is the angle of the ith optic axis with respect to
the normal to the array. For small angles, sin 0; * 04 and’

the far field becomes

B (x,.57,,t) = U, (¢, -202 0,7, ,t) (54)

where the frequency shifting property of Fourier transforms
has been used (Ref 27:65). The angle o, now affects two
factors: exp(j X%%(XI-ZHZIOi)Z) from Eq (22) and

27D

exp[j Azi (x1-2nz,oi)] from Eq (42). For the coaxial case,
1

the gaussian envelope behaves as in Eq (39), therefore using,
for example, the Rayleigh criterion (Ref 15:354,360) the
maximum o, should be on the order of w, or about 3 mrad and
no larger. Similar results are obtained for y in the two
dimensional case.

One final, rather serious, problem in the area of laser
position:errors must be addressed. Eqs (26) and following
were derived on the basis that all N beams that were super-

imposed propagated a distance z, into the far field. This
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assumes that z, is measured from precisely the same point in

each output beam (fqr example, the beam waist). If this is
not true, i.e, if the waists are not perfectly aligned, then
the z,'s are not the same and in fact must be represented

as z, +Az; where Az, is the offset of the ith beam. Substi-
tuting this new distance into Eq (26) indicates that Azi
makes a negligible contribution everywhere except the
exp(jkAzi) term in Pz, .v,) (see Eq (18)). 1If kAzi is
folded into the interval 0 to 27 and is considered a gaussian

random variable independent of,¢i(t), then exp(jkAzi) =

0.2

exp[- ?f] where o; is the variance of kAzi. Even if the

beam waists could be perfectly aligned so that Az, was zero,
vibrations, thermal expansion, and other effects would com-
bine to create a bz, . Presumably this additional phase
variation could be combined with ¢i(t) and compensated appro-
priately. However, even this requires that the optical path
lengths from the point at which the beams are sampled to the
detectors that form the first part of the phase locked loop
must be equal. The bottom line is that for coherent combin-
ation, the relative phase of the lasers must be controlled
precisely, and at optical wavelengths that is a very strin-

gent requirement.
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III. Coaxial Case

The coherent combination of several lasers coaxially,
i.e. with the optical axes of the individual lasers
coincident, led to a mean far field given by Eq (27).
Certain simplifying assumptions produced Eq (31). This
field is seen to be a temporal pulse train as an ''envelope"
on a ''carrier" of frequency fo—[gil]Af where £ 1is the
original optical frequency. In addition, the signal has a
peak amplitude of ANexp[- %;]-and has a spatial distribu-
tion gi§en by Eq (23) which describes a gaussian spherical
wave. The temporal pulse train given by %éﬁ;%%é;? whose
characteristics are functions of N and Af suggests that
the signal could be used for ranging (as in a radar). If
so, a measure is needed for the performance of such a

system as a function of controllable parameters such as N

and Af.

Ambiguity Function

Before any performance criteria can be developed,
there must be some assumptions regarding the receiver
structure. Since this is not a receiver design study, only
general assumptions will be made. (For further detail see
Ref 6, 11, 23, 32, 37, and 40.) The first assumption of
course is that the receiver employs coherent Kheterodyne)
detection (Ref 11:173-200). Aside from the requirement
discussed in the previous section, this will result in

better performance than in the direct detection case since
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both amplitude and phase information are preserved. "The
heterodyne detector, however, is sensitive to spatial
alignment, but this is not assumed to be a problem here.
The second assumption is thaf a matched filter processor
structure is used. For the case of signals in additive
white gaussian noise (this is true in general for hetero-
dyne receivers), the matched filter is the optimum receiver
(Ref 6:18-32; 23:335-395; 40:311-317). The matched filter
essentially correlates the received signal with a known
signal and gives a peak response.when the two signals are
"matched." This of course requires that the receiver
structure change if the signal changes. Fig. 5 is a repre-
sentative system diagram. The thifd assumption is that
certain physical phenomena that affect the optical signal

as it is transmitted and reflected are ignored. These

Combiner
Input
Field Matched
> > |Detector F=>{ Filter | s(t)
- , Processor

Local Oscillator
5 Field

Fig. 5. System Diagram of Heterodyne Receiver
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include such effects as path losses, field of view, losses
in the optics, field alignment, aperture size, and others.
These are ignored because they affect any signal in the
same manner and therefore. are unnecessary when comparing
the relative performance of various signal structures.
Based on detection theory, the likelihood ratio is a
function which, when compared to a threshold,.produces an
optimum decision of which signal was the '"'most likely"
recei?ed. This likelihood function, in the case of a
heterodyne receiver (énd gaussian noise) with a matched

filter processor, turns out to be proportional to

x€t,v) = ? s(t) s* (t-T1) exp (jZth)dt (55)
which is just a two dimensional correlation of a signal s(t)
(which can be complex) with its time (1) t;anslated and
doppler (v) shifted version (Ref 6:59-108; 31:70-75,118-158;
37:275-313). The ambiguity function, x(t,v), is a function
of time delay, 1, that is related to the range of the tar-
get and doppler shift, v, that is related to'the velocity
of the target. (x is actually '"mormalized" so phat x(Q,O)

corresponds to some known Toand vo.) The signal of

interest here is just the mean of the far field in Eq (31).

Since the only part of the signal envelope in Eq (31) that
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varies with time is §£E—HE%§E

SRR EE and since the detector does

the spatial integration of the field, the signal of inter-

est will be considered to be

2 .
s(t) = Aexp[- 92-] I ‘\;”AAftt (56)

where Aexp[- %;] is retained explicitly as part of the
amplitude of s(t) and exp[- %;) is considered to be the
strong signal approximation to the characteristic function
of the partially controlled r%ndom phase, ¢i(t). Unfor-
tﬁnatelf, substituting Eq (56) into Eq (55) yields a

result that is not immediately integrable to obtain x(t,v).

However, over a single period,

s(t) = exp[- &) SR IpAte (s7)

This approximation gets better as N gets lérger. Therefore,

2 © . .
xCt,v) = :}2 -£ s1n12fAft SlﬁTgiﬁS(t_T) exp (j2mvt) dt
2
= f‘f—r F(s(t) s(t-1))
A2
= A F.(s(®) *F, (s(t-0))

b F(s(6)) * exp(j2mvr)F (s (1))
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Now, by the duality property of ambiguity functions

(Ref 37:309-310)

x(t,v) = xl(V,~T)

where x is the ambiguity function of s(t) whose Fourier

transform is Sl(f) (whose ambiguity function is xl(r,v)).

Now the Fourier transform of s(t) in Eq (58) is just a

square pulse of height 1 and width NAf whose ambiguity

function is given by (Ref 37:280)

4 o sin NﬂAfV[l - %%%]
[* - ] w1

Ix, (T.v) ] =<

(0, elsewhere

Therefore,

A2
[x(t,v)| KET|X1(V:'T)|

f%;[l i %%%} sin nNAf(-r)[l - %%%)

, {T|$NAf

ﬂ(-T)[l -

NAf

)

2 sin NﬂAfT{l . ]
f%?[l - %%%] %Z% , |v|sSNAf

wr[l - %%f]

0, elsewhere

(60)




[x(t,v)|
A

sin Nnafr

{’ mAfT

Fig. 6. Ambiguity Function of sin(NwAft)/mAft

[x(t,0)]

N
.
i
sin NwAfT
nAfT
T 1 i
Naf 0 NaT (v=0)
(a)

-NAf

0
(b)

= \)
NAf (T=0)

Fig. 7. Ambiguity Function for a) Known Doppler
and b) Known Delay
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Eq (60) is sketched in Fig. 6 on Page 43. |x(t,0)]| is
shown in Fig. 7a, and |x(0,v)] is shown in Fig. 7b found on
Page 43. ;

It is now possible to obtain Cramer-Rao lower bounds
for estimates of t and v in terms of the signal energy to
noise ratio, the bandwidth of the signal, and the duration
of the signal. These are estimates of delay time and
doppler velocity for a given'signai structure that has an
ambiguity function x(t,v). The (parameter) estimate of
delay is denoted T and that of ddppler is denoted V. The
variances (and standard deviations) of these estimates are
a measure of the precision of the measurement, i.e a
smaller variance implies a more precise measurement. Fol-

lowing Ref 31:70-74 and 37:294-299 the results are

-1
o, = (Var(i-1))% 2 LJ%E y] (61)
0
. S-o)yE s (R ;T
o, = (Var(3-v)) 2»(1‘0 a] (62)

where o, is the standard deviation of the delay estimator T,
o, is the standard deviation of the doppler estimator v,

the signal energy is assumed to be much larger than the
noise, the noise is given by the height, 2}, of its power
spectral density (the noise is assumed to be white ana

gaussian), and y and 6 are
y* = 4n? [T £%|S(£)|%df (63)

§% = 4m? [T t?|s(t)]2dt (64)
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where Y represents the rms bandwidth of the signal s(t) and
8§ represents the rms duration of thg signal. (Eqs (63) and
(64) were derived in Ref 31 and 37 for normalized signals
s(t) and S(f).) Eqs (61) and (62) also assume that there
is no coupling between y and 6§, i.e. that there is no linear
frequency modulation component (Ref 31:74). Now, the range
precision and range rate precision respectively are given

by (Ref 31:74)

N> N0
a

(65)

B, (66)

The signal energy, E, is found from Eq (56) in series form,

2 .
ls(] = exp|- &) |SiRNnEe)
= ex (- 0’Z]Z(ex ('ZTIAft))i
p o - P J

Therefore,

e 2
E = L%Js(t)l dt

where Tp = i%-is a period (Eq (33)) so that




1
258
= Azexp[—UZJI [N + I3z exp(jZn(i-k)Aft)]dt
ol 9 itk
20
o a2 _~2| | N sin m(i-k)
& eXP[ o ][Af k. #1)2 _n'Ti—kLYA_f_]
- ad N '
= A exp[-oz]Af (67)

Eq (60) was derived from the approximation in Eq (57).
This approximation is good only for a single period of the
signal, s(t) (Eq (56)). However, s(t) is periodic in t and
can be represented as
m-1

r s_(t-iT
i=0 e P)

s(t)

i
L s, (t - Kf)
1

‘"where m is the number of repetitions of Sa(t)’ sa(t) is the
approximation over a single period Tp’ and T =ﬁ%w Now

the ambiguity function of s(t) becomes

: 1
m-1 sin mv(m-|p|)

x(t,v) = z exp[jnv(m-1+p)£?]xa[r-f%,v] T 134
p=- (m-1) sin Vg

where xa(r,v) is given by Eq (60) (Ref 31:185-186). It is
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seen that the new ambiguity function is just the sum of the
old ambiguity functions shifted on the delay axis by
intervals of g% and multiplied by a weighting term. The
magnitude of the pth term of the ambiguity function is

just (Ref 31:187),

sin nv(m-lpl)g?

[x(t,v)|
at p

o vt (68)
sin TY\)Af

Thus there are delay ambiguities at intervals of g% and a

E | sin nv(m—lpl)g?
fine structure (due to T ) in doppler with
sin TR

intervals of Af. Now some specific applications for a
coaxial system whose far field is given by Eq (31) can be

considered.

Range Measurement

When only range measurements are desired, the doppler
is considered to be known, i.e. tracked (or zero for a
stationary target). If the doppler is unknown, then it
must be considered at the same time 1 is considered i.e.
.jointly estimated (this is done later in this section), or

the ambiguity function must be broad along the v axis so

that there is little chance of error in estimating t.

Therefore the interest in x(t,v) is just along the Tt axis.

et L
.

Fig. 7a is the 1 axis for a single pulse. Multiple pulses ' {
(Eq (68)) would produce a periodic function with amplitude

weighting. As long as the round trip time (delay) of a
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pulse is less than the pulse rate, there is no ambiguity
as to which peak on the T axis is involved. The width of
the central peak in Fig. 7a is a crude measure of the
precision with which the target range can be measured.
Basically, this precision is a function of _%f so that as
the total spectral width of the field is increased the
range precision can be made arbitrarily good Qithin the
limit that NAf is less than or equal to the gain line
width of the lasers. Explicitly, the range precision is
found by combining Eqs (61) and (65) to obtain

e

[0} < y
R E
a5 Y

0
Now from Eq (63),
Y2 = 4m? [ £2|S(f)|2df

if S(f) is normalized. If S(f) is not normalized then

{, ErjacEy [2df
[o1s(£)|?

Yz = 4“2

Now, from Eq (57)

2]sin NnAft

S(C) - Aexp[-%r “=TAft

Therefore,




] 2
1 Aexp[-%r]g? i pEle AL

2
S(f) =
0, elsewhere
o SoE fz{llz
¢ iT df
2ite 2 0 A
b s é“ NAL 1)2
Z{T[H] df
|
: 22 mica
= —3—- N Af (71)

: So that using Eqs (67) ard (71) in (69),

Lf ; . . 5 ' c

5 e z .
| %JZA §xgg-o TN [%;(NAf)z]
0
5 c/3N,

(72)

v8n*A%exp (-0° )N Af

Eq (72) shows that the range measurement precision is pro-
portional to ﬁ;%ff— which is in line with what was expected.
Since NAf is the total bandwidth of the signal without
regard to the frequency spacings, the assumption of fi = iAf
.was not really restrictive. Eq (72) then is a rather general |
result that represents the best possible range measurement
precision obtainable by the temporal signalhin the mean far

field of Eq (27).

Velocity Mcasurement

In the dual case, a similar derivation can be made for

i doppler (velocity) measurement precision. In this case the

1.
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range is presumed known (or the ambiguity function is broad
in 1), so that the interest in x(t,v) is only along the v
axis. Fig. 7b is the v axis for a single pulse. Multiple
pulses introduce a fine structure as given in Eq (68). For
a single pulse, the crude doppler measurement precision
improves as NAf gets small. This implies that increasing
tp = N%f also increases the doppler precision. Basically,
this says that the more information that is received (i.e.
the longer the pulse), the better the doppler precision

can be made. From Eqs (62) and (66)

op 2 —2— ‘ (73)

and from Eq (64),

82 = 4m2 ST t?|s(t)]|2dt

o

so that for the unnormalized s(t) of Eq (57)

35w gyt e B lnteyitae 74)
[o]s(t)|%dt

Therefore for a single pulse, [:IS(t)|2dt = AzexP(-oz)Ef as
in Eq (67) and

- 1
o 2 -tvd <
[, t?]s(t)|%dt = 2 ez 5 o—t 2 IzzfsinanAft dt
0
_ A?exp(-02)(_1
Ty Vv _ s
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where the integral has been taken over a single period of

the signal. For m pulses, the signal energy is multiplied

by m so that Eq (74) becomes

2.0 g Azexgs—czl m | (mA%exp (-o2)N]?
i ey [273‘1’:’][ At

- me : {763

and 6§ is seen to be independent of the number of pulses not-
withstanding the fine structure on the doppler axis given
in Eq (68). This just indicates that the doppler precision
is affected only by the pulse width and not the number of
pulses. The fine structure in Eq (68) tends to improve the
resolution of térgets with similar doppler velocities, but
it also increases the number of doppler ambiguities (peaks)
(Ref 31:191). Eq (76), however, is concerned only with
measurement precision and not resolution, i.e. local
accuracy without regard to ambiguity. Now using Eqs (67)

and (76) in (73),

o 2 A
9 2A%exp (-0*JN 2
NoAf NAf2

V16 Aexp(-07)

and the doppler precision depends only on Af.
This result is slightly different from what was ex-

pected from inspection of Eq (60) since N does not appear
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A g p— — vy Y=

in Eq (77). The reason is found in Eq (75) where the rms
signal duration was determined for a period. When this is
done for square temporai pulses (as in radar theory), the
result is an integral over the pulse width. If this is

done here, by analogy, then Eq (76) becomes

8% = wrarr (762)
so that Eq (77) becomes

AVNoNAF?®

: e (77a)
V16 A%exp(-07?)

0'1'{_

The discrepancy occurs because s(t) is of infinite duration.
This is the dual of the radar problem where the ideal rec-
tangular signais have infinite mean square bandwidth

(Ref 31:49-50).‘ In that case the signal is considered band
limited and appropriate approximations made. The result is
dependent on rms pulse width as it is in Eq (77a) for this
case. However, for the lasers, even though the signal is,

strictly speaking, time limited (it is at least causal) the

infinite result may be more closely approximated here than

for the radar case. Thus Eqs (77) and (77a) represent an
interésting dichotomy of results that are both reasonable,
but both different. These equations represént the best
possible precision in doppler measurement (wheh range is

known) that can be obtained from the field of Eq (31).




Coupled Measurements

It is often desirable to make measurements of both range
and velocity, i.e. the case where both are unknown. Eqs (72)
and (77) or (77a) are still valid as long as there is no
linear frequency modulation on the signal, i.e. the complex
envelope is real (Réf 31:74; 37:299). 1If this is the case,
the range precision can be improved by increasing N or Af.
However, increasing Af degrades doppler precision relatively
rapidly. By increasing N, it is possible to improve range
precision while the doppler precision remains the same
(Eq (77)) or degrades more slowly (Eq (77a)). "Doppler pre-
cision can be increased by decreasing Af, but to maintain
the range precision, N must be increased accordingly. This
is a rather nice result although increasing N becomes pro-
hibitively expensive at some point (even for the Federal
Government) so there is a limit on the range and doppler
precision that can be obtained. 1In addition, since NAf must
be at most equal to the laser gain line width, as N is
increased, Af is decreased. This coupling between N and Af
further complicates the task of obtaining the best possible
simultaneous range and velocity precisions.

It is possible to improve oR and O simultaneously by
increasing the energy to noise ratio, ﬁ%. If N, is fixed,
this can be accomplished by increasing E. From Eq (67), E
can be increased by increasing N or decreasing Af with the
same effects on og and op noted above. E can also be

increased by decreasing the variance of the phase, i.e.
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controlling the phase more tightly, or by increasing A.
Both of these approaches can be taken, but both have limits;
for example, o can be méde no smaller than zero, and A is

‘ limited by the size of the laser gain medium as well as
other characteristics of the laser.

The simplest way to increase E without changing No’ N,
or Af is just to collect more pulses. Eq (67) was developed
for the energy of a single period, Tp - gf. If m pulses are
used, the energy in Eq (67) increases linearly with m, and
OR and Ok from Eqs (72) and (77) are improved accordingly.
This approach is only limited by the number of pulses that

 § : can be received and by the assumption that the target range

and doppler are not changing appreciably during the obser-
vation period (Ref 3= 70Y,

One additional case of interest is that of introducing
some sort of frequency or phase modulation on the signal
s(t). This could be implemented, conceptually at least, by
modulating all of the lasers simultaneously and in the same
manner. A simple case is that of linear frequency modula-

tion where

8, (t) = s(t)exp(jrgt?) (78)

By a property of ambiguity functions (Ref 31:123; 37:290)




X (ToV) = x(1,v-g1)

; 5 V=0T
N T sin NﬂAft[l-l—N%fl}l i
A Z\‘E[I‘J—N%TL] , |v-g1|<NAE

oo [ Lge) |

X (T V) | = (79)
0, elsewhere

This transformation, in effect, shears the old v axis to

v = gt. This will decrease the size of the central peaks

on the T and v axes so that if either range or doppler is
known, the other may be determined with better precision
than before. However, for the coupled case, the Cramer-Rao
lower bounds are increased as sho&n in Ref 31:73-74 and
37:298. Hence a simple linear modulation is not helpful to
the coupled measurement case. Much more complex modulations
such as pulse coding (Ref 37:314-323) may be more useful,
but their implementation for N lasers would probably be

very difficult.
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IV. Linear Array

The mean far field for a planar array of lasers was
given by Eq (44). This equation cannot be reduced to a
convenient closed form for the general case. It can be
solved numerically for a given set of Ajps fik’ CPPA and
Oik? but some simplifying assumptions are needed before
any further analysis is possible. The first such assumption
that will be used throughout this section is that the array
will be considered one dimensional, i.e. a linear array.
Most of the results can be exéended to two or more dimen-
sions if desifed, and, in fact, one special case of a
planar array will be considered. Nevertheless, the impor-
tant results can be demonstrated with a linear array. The
second assumption used in this section is that the locations
of the lasers are precisely known. Therefore, Eq (50) can
be rewritten for op = 0 as,

E(Ux(xz’yl’t)) = P(xl,yl)Uls(xl,Yl)exP['jfli

. 27TDixl
Aiexp [J [anit + —5‘—2—;——' + ei]] (80)

2mD.x
Because of the ——X%-l term in the exponent, this mean field
1

has a spatial modulation within the overall -gaussian envelope
described by P(kl,yl)Uls(xl,yl). The performance measures
in this section will deal with the characteristics of this
spatial modulation in terms of N, fi' D, and 6; and, for

certain applications, will consider peak-to-side lobe ratios.
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Pattern Characteristics

In order to maintain the pulsed nature of the signal
used in the coaxial case, the first.assumption used here is
that fi = iAf; other cases wiil be discussed later. In
addition, ei is a simple phase shift that merely determines
an absolute reference for either the time or space coordi-
nates. Hence, with no loss in generality, it can be
assumed to be zero. An interesting use for ei will be
discussed later.

Scanning. For uniform aperfure excitations (Ai = A)
and considering a uniform array where Di = iD, Eq (80)

becomes

Dx
. 27Dx, |sin Nn[Aft + 1]
(27A fth——r) Az, (81)
A 1 sin n[Aft + Dx‘]
Xz,

As before, the exponential factor indicates a shift of the

optical frequency to fo-[E%lJAf, but it also indicates that

27TDX1
A%y

The ratio of sinusoids in Eq (81) can be written as a
'é%[gl] and w=2rAf. This

there is now a spatial frequency because of the term.

function of ;(k’x1+wt) where k” = X

is the standard form of a classical travelling wave whose

profile is given at t = 0, temporal period is %?, phase

velocity is y., and spatial period is %@. Therefore,




\

Temporal period = Tp = %% = £? sec (Eq (33))

Temporal pulse width = tp = N%f sec (Eq (32))
& Af)\z1 o
Phase velocity = = " ) o > (82)
Az
Spatial period = Xp = %E = —ﬁl m
: 2Az1

Spatial pulse width = xp s

P

0 is identical (within a

The spatial beam profile at t
scaling constant) to the temporal profile at x, = 0 as
shown in Fig. 4. .Therefore, in addition to the temporal

pulse train, there is now a spatial pulse train scanning

linearly in x at a rate of %L = Af Hz. This still occurs
beneath the gaussian envelope. From Eq (39), for ) = 10.6y,
5 = 1 km, and w = 1 mm, the waist at z, is about 3.5 m.

The beam width is equivalent to xp which for an array dimen-
sion ND = 1 m is about 2 cm. For D = 1 em (this would be

for an array of 100 lasers spaced 1 cm apart), the spatial

- period is about 1 m. The result is illustrated in Fig. 8.

The small beams measured by X5 will move right or left
(depending on whether fi = iaf or (N - 1)Af, i.e. whether

the frequency offsets step "up" the array or ''down' the
Az

array) at a speed of ~—B—l EEE and the pattern will repeat

every £? sec. Unfortunately, X5 places more stfingent

restrictions on the misalignment angles of the laser optical

e




axes as shown by Eq (54). Now the maximum o5 should be on

the order of 2? or about 10-° rad; This is two orders of
magnitude more restrictive than the 107°® rad for the coaxial
case.

This is a useful result for a system that does not
require resolution of close targets in azimuth to less than
about w, and does require multiple target returns (for
example to reduce glint or other transient phenomena).
Unfortunately, it also complicates the ambiguity problem
"as there is no way to distinguish which beam, xp, is pro-
viding the return. Therefore, the resolution capability
inherent in the small x_ is being wasted. These side

lobes away from the x, = 0 peak are called "grating lobes"
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Fig. 8. Example of Far Field Mean Beam Pattern
for N=100, D=1 cm, z,=1 km.
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in radar theory. It can be shown that these lobes do not
exist if D<% (Ref 35:90) which is impossible at optical
wavelengths. Eqs (39) and (82) suggest two possible solu-
tions. If the waist, w,, could be made sufficiently small
(<Xp) then the gaussian envelope could be made to attenuate
unwvanted lobes. From Eq (39) the only way to do this is to
increase w. For significant attenuation of the first side
lobes, w, & é? , therefore w 2 %? . This is not desirable
since originally the laser aperture radius was chosen to
be %? to minimize diffraction effects and maximize power
transmission. Hence the aperture radius must-be at least
on the order of the aperture separation, and the apeftures
overlap. Eq (82) indicates that XP can be increased by
decreasing D and similar results are obtained, i.e. the
apertures overlap. Thus for D>%, there is only one other
way to eliminate the grating lobes and that is to use an

aperiodic array, i.e. Di#iD. This case will be discussed

at the end of this section.

Pattern Shape. So far the amplitudes, Ai’ of the

lasers have been assumed to be equal and the result has

sin Nx

bee :
"8 =in %

pattern in space, Eq (81). It is useful to
pursue a slightly different analysis of Eq (80) for two
reasons: 1) more flexibility may be obtained if the Ai are
not all the same, and 2) the side lobe structure of Eq (81)
may not be desirable. 1In Eq (81), the first side lobe is
the highest. Fig. 9 shows the peak-to-first-side lobe

ratio as a function of N. Therefore, even as the number
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Fig. 9. Peak-to-First-Side Lobe Ratio versus
N for sin(Nx)/sin(x).
of lasers increases, after N = 20 the highest side lobe
grows linearly with the peak. :
If Eq (80) is rewrittea for fi = iAf, D, = iD, and

ei = i0 the result is
B(U, (x,.3,.8)) = PG,y DU, Gx, Ly Dexn (-] zagat (8)
1 1’y1’ 1’y1 18 x’y1 P i i

where

271Dx
z = exp|j(2raft + L 4+ e)) (84)

AZ
1

and the series in Eq (83) can be written

i = - .
?Aiz = Ay.1 2 (z-2z;) : (85)

which is just a polynomial in z (Ref 35:87). Eq (84) is
referred to in antenna theory as a z transform. (For a
more general discussion of antennavtheory, see, for example,
Ref 5; broperties of 2z transforms and their uses ﬁay be
found in Ref 25:45-77 and 35:87-111.) Now, Eq (84) can be

written




zZ = exp {J [2—;T-]D[—J- + {_D + -2——}]}

AAfE

= expLj[%?]D{gl - sin eu]} (86)

X

where EL in the far field approximation is the angle of

1
observation with respect to the z axis (optical axis) and
6, represents the angle at which the "main lobe" is point-

ing (Ref 35:89) as shown in Fig. 10.

® = Lasers

Fig. 10. Geometry of Linear Array and Far Field

0f course, |sin eol cannot be greater than 1 so that wvalues

of [l%§£ * g%%} that are greater than 1 essentially repre- 3

sent beam angles outside of the '"visible" region. In fact, : §

[§%§E + %#%} may be considered modulo 27, i.e. {l%§£ +'£¥%]=
2nw + sin 6, vhere n = 0, 21, #2,... and |sin 8,| S 1

(Ref 35:89). Therefore, in Eq (86) the main beam location
is a function of time as was shown by Eq (82). It is now
possible to choose the zeroes and amplitude weightings of the
polynomial in Eq (85) to yield desirable beam width or

side lobe properties (see, for example, Ref 30, 36, and
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Ref 35:95-110). The array can, in fact, be designed so
that the side lobes are always below a given désign value
(which can be made much lower:- than the results in Fig. 9)
for a given main beam width (this is called a Chebyshev
array; Ref 35:111-118). Thus, with this approach the side

lobes may be better controlled, however, there are still

grating lobes because.D>%.

It is interesting to note that by duality similar
results can be obtained for the temporal pulse train rep-

resented by Eq (31). 1In this case, for x. = 0, the zeroes

1
of Eq (85) may be chosen so that ‘the temporal side lobes
are controlled in a desired manner. Presumably appropriate
z; and Ai could be chosen to control the temporal and

spatial side lobes simultaneously.

Monochromatic Beam

The z transforms also indicate another interesting
possibility. “If in Eq (86), Af = 0, then the beam position
is not a function of time; it is only a function of 6.

This represents the case of a continuous wave resultant
beam where all N lasers are oscillating at the same fre-

quency, f , and are being added coherently with a control-

°)
lable phase offset, 6, across the array. This case is
very similar to the phased array in antenna theory.

Beam Steering. For Af = 0, Eq (86) beéomes

: = onls 35t - )
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where -e°~ 77p Since % is small. For the linear array,

then, the main beam may be pointed anywhere within the
gaussian envelope by proper choice of 6. (0f course,
because of the grating lobes, one "main beam'" is indis-
tinguishable from its neighbor and in fact all of the lobes
move simultaneously with 6. Nevertheless a "main beam"

is referred to for convenienpe.) I1f desired,'the main beam

may be made to scan sinusoidally for

A6
eo ™D

rsin anst

= 20T gin ong ¢ (88)
where r is a scale factor that determines the limits of the
scan displacement and fS is the sinusoidal scan rate. Two
such arrays arranged orthogonally would provide two sets of
pencil beams that scan orthogonally. Such a system could

be used for tracking a target.

Planar Array. For the special case of fi = Af =0,

Aik = A, Oi = 9» Dik = D, and dik = d, Eq (44) may be

written as

— 02 )
E(Ux(xx’yl’t)) = P(xl,Yl)Uls(xl,Yl)AexP[’jr}iﬁ

W T
e (3 B 0ty +yey, ] B9
1 1

Now, if eik = iax + kay, Eq (89) becomes 'separable",
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E(U‘(xl,yl,t)) = P(xl,yl)Uls(xl,yl)Aexp{ Z]ik

<is P2 x1 )‘ax
1

A
exp [k EDaR v (90

In spherical coordinates, x = zlsihwcosc and ¥, =
z‘sinwsinc where ¢ is the angle off of the normal to the
array and ¢ is the angle in the plane of the array (Fig. 11).
The result is the same as in Ref 10:36 (see also Ref
9:141-142, 172-173). Therefore,.for a symmetric distribu-

tion of lasers around the center of the array and with a

At

L Direction of
™ R Main Beam

Fig. 11. Geometry of Planar Array and Far Field

laser at the center of the array (i.e. an odd number of

lasers in both rows and columns which would require at
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least 9 lasers) the pointing angle of the main beam is at

Vo ¥ where (Ref 10:38)

o
tan co = aﬁ % ‘(91)
5.0 o A 5 oLXZ & -

sin wo ® =l 5 + —gr (92)

A conical scan is useful for tracking applications. 1In
terms of wo’ Co a conical scan would require a constant wo
and a Co that increases linearly with time. If D = d,

tﬁen

Q
I

rcos 2nfst
(93)

Q.

y rsin 2ufst

will produce a conical scan at a rate of fs’ For this

1

case, ¥ = sin” %%% and s 2nf_t. Because of the grating

lobes, the resulting scan in the X, ¥, plane will look like
a series of concentric circles with amplitudes determined by i

the overall gaussian envelope.

-Aperiodic Arrays

As noted earlier, the grating lobes may not be objec-
tionable depending on the abplication. However, they must
be removed to obtain the resolution inherent in xp and to
eliminate ambiguities in target location due to the numerous
lobes. The most feasible way to remove them is to use an
aperiodic array where Di#iD. The analysis here is similar

to radar antenna theory (Ref 5, 30, 35) except that the
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wavelengths are much shorter. In general, aperiodic arrays
can be designed with the element spacings chosen according
to an algorithm or chosen in a completely random manner.
The statistics for an ensemble of random array configura-
tions lead to various descriptions of the far field beam
pattern. Both types of aperiodic arrays are discussed
briefly with general results drawn from antenna theory and
applied to the laser case. .

Spatial Taper. Unfortunately there is no general theory

governing the design of aperiodic arrays. Several techniques
are listed in Ref 35:135; the most successful of which is
apparently a process called dynamic programming which is a
sophisticated trial-and-error ﬁrocedure. Iterative methods
have also been used to synthesize a desired pattern (Ref 36).
Ref 20 showed that for a linear array, the lowest side lobe
levels were generally from space tapered arrays. Spatial
tapering usually results in an array in which the radiating
elements are closely spaced near the center of the array and
become more spread out near the edge of the array. For
example, the element spacingé can be made inversely propor-
tional to the aperture excitation (which is considered
continuous over the entire array.aperture) (Ref 35:126-129).
The result is a radiation pattern whose main beam and first
couple of side lobes approximate the design goals fairly
closely. However, the side lobes tend to get higher for
angles further from the main beam (Ref 35:130). Fig. 12 on

the next page is a representation of the radiation pattern
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Fig. 12. Representation of Typical Space Tapered

Array Pattern (Adapted from Ref 35:130).
for a typical spatially tapered array. Region I approxi-
mates the design goals with low side lobes. Region II is

a transition region where the side lobes get higher.

Region III has average side lobe levels similar to the
results for random arrays. If the pattern in Regions II

and III will not be used, then perhaps spatial tapering can
eliminate the grating lobe problem. In the case of optical
frequencies, this might be true because the overall gaussian

envelope severely attenuates the pattern away from the main

beam. For example, at a distance of 4w1 from x = 0, the

gaussian profile is about 36 db down from the peak at £ 0.
Unfortunately, because of the small wavelength involved,
Region III occurs much closer to the main beam than for the
radio frequency case. In fact, for most spat{al tapers, the
design pattern approaches the Region III results by the first'
side lobe (Ref 35:150). Since the location of the first side

lobe is proportional to % where L is the overall length of
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the array, the gaussian envelope will not be selective
enough in the neighborhood of the main beam to kill off the
high side lobes in Regions II and III. .

Random Arrays. Strictly speaking there is no such

thing as a random array since any physical array is
completely deterministic (not including measurement errors).
This seems to imply that to determine anything about the
far field pattern of an infiﬁitely iarge class of specific
array configurations, one must realize each array and com- ‘
pute its pattern. Fortunately this is not the case. It is
possible to make certain probabilistic statements that are
valid for such a class of arrays whose elements may be
positioned in some random manner. Such statements, though,
are merely existence statements or bounds in that, within
the class of arrays being considered, at least some array
configurations exist whose patterns are described by these
probabilistic :tatements. This approach is absolutely no
help at all iﬁ realizing a specific array with the desired
characteristics. Such a realization must be left to a
computer or a designer's insight. Nevertheless, it is
useful to review the results of random array analysis

(Ref 19, 20, 30, 35).

Eq (50) was the result for the general one dimensional
near array where ¢l(t) and D were considered gaussian
rarlables When considering the far field pattern,

on is arbitrary and will be set to

E
¢ MR 8 #
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E(Ux (xx,yl,t)) = P(xl,yl)Uls(xl,yl)e}ép[‘:}z’[o.¢z+[2"):zl;]°D2]]§

27D.x
‘] (94)

AiexP[j__X%:_
where the Di are the means of the element locations, and
0D2 is their variance (since they are considered to have
identical variances). If the array is uniform (Di = iD),
the series in Eq (94) has the spatial grating lobes shown
in Fig. 8. It can be seen imfediately that for =0 op?
can be appropriately chosen to attenuate the grating lobes.

In Eq (51), op was chosen small so that the far field

pattern was not significantly affected; here, however,
x 2
[Z“T% GD] must be relatively large to accomplish the
1
desired result. In a manner completely analagous to the

temporal results of Eqs (34) and (35), the mean far field

intensity is proportional to N for X, # 0 since

. Xy v2
sin NnD—E—

2 I x. )2 A
E[I =|l-exp ZWJS—} o 1 N + expﬁZnXJ—] o 1._________L (95)
. 1) [[ Azx = z: D sin 'erj\Xz—1

1
where'Ai = A and Di = iD i Bq (94). At x = 0, however,
the main beam peak is proportional to N2. fherefore, the
power ratio of the average side lobe level to‘the main beam
peak is ﬁ; = %, so that the average side lobe level is

-inversely proportional to the number of lasers in the array

(Ref 35:140-142).
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There is still, however, a finite probability that
some side lobe will be much higher than the average side
lobe level of %. This is true since the far field pattern
of any given array is simply one possible sample function
of all of those under consideration, and any individual
sample function may have very high or very low side lobes.
Eq (94) indicates that the mean of U1 can be made to atten-
uate the grating lobes for xl#O as much as desired. The
field, however, may deviate from this mean by a considerable
amount. . To investigate this deviation a new definition is
used so that the field under consideration is zero mean

and unit wvariance

Ul (xl ,YI :t) = E(Ul (Xl ,Yl ’t))
/AT (0,0 %]

(96)

U1 (x1 o ,8) =

In general, U; is a complex random process with real and
imaginary parts. For a large number of elements, these
parts may be considered asymptotically jointly gaussian
random processes by the central limit theorem (Ref 19:258;
35:147). With this assumption, the joint probability

' density of the real and imaginary parts of the field U; is
known, and the probability that any side lobe (a given
amplitude of the field) will not exceed some specified
threshold can be determined. (This is not the- same as the
assumption that was made earlier that only the statistics
of the phase were known and that the amplitude was deter-

ministic. 1In this case, both the amplitude and phase of
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the far field U: are considered random for this class of
arrays since the elements may have locations determined by
some unspecified probability density.) Since U: is zero
mean, its real and imaginary ﬁarts are identically distri-
buted as well as independent. This is because the element
locations are considered to have a common underlying proba-
bility density, so that the element positions are identically
distributed about their means D,. Now Var(UlUl*) = N from
Eq (95) since E(I ) = E[UIUI*) = Var(UlUl*) and op® is big
enough. Following Ref 19:261 and.35:147-151, the result is

A
Priju’| > X
» YN

as follows:
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~Pr{|U1j > N] exp NJ
Pr[lU;l2> B] = exp(-B) 97)

where B = %}2 is the power ratio of the desired threshold
to the average side lobe level. The exponential dependence
is obtained from the exponential distribution of the ampli-
tude of |U;|. The probability that the peak side lobe is
B

less than B is just l-e Eq (97), however, is true for

only a single sample value of U; at some x . To find the
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probability that no side lobe anywhere in the pattern
exceeds B, it is necessary to take many spatial samples of
U:. The issue now is how many samples should there be and
where should they be. The latter problem is reduced by
simply choosing the distance between samples to be the same.
To make the computations simpler, the number of samples may
be constrained by the requirement that the saﬁples be
statistically independent. Crudely, then, the number of
sampleé needed to describe the random process is a set of
independent random variables. For such a case, the samples
are separated by no less than the coherence distance of the
pattern and the'pattern is considered piecewise constant
over a coherencé length. The total probability that the
set of {lU;(xi)l} is less than B is just the product of the

probabilities that each individual sample is less than B,

B = Pr({lU;(xi)|2}<B)
= Pr(lU;(x1)|2<B and IU:(x2)|2<B and... IU;(xn)|2<B)
= (1-exp(-B))" - (98)

where n is the number of samples and is called the array
parameter. As the coherence distance of the pattern gets

small, n gets large. Eq (98) can be rewritten,

B = - 1n

1
1- Bﬁ] : (98a)

Now if the probability (confidence level) 8 is chosen and

n is known, then the peak side lobe level (with respect to
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the average side lobe 1eve1; %),B,can be determined. For
example, for a-90% probability that no side lobe exceeds B
and for n = 10, then B = 4.56, i.e. with 90% confidence,
the peak side lobe of |U;|2 is 4.56 times as high as the
average side lobe level, %. It should be noted, too, that
the underlying distribution of the array element locations
is not a factor in this analysis; this is one of the
reasons why the analysis is general for a large class of
array configurations.

The determination of the’array parameter, n, can be
made in several ways (Ref 35:151-156) and the result can be

given by

>t

(99)

where L is the length of the array. This is intuitively
correct since % is roughly the angular lobe width of the
pattern, therefore the necessary ''sample rate' should be
proportional to %. For optical wavelengths, then,

(particularly for CO2 lasers) n is on the order of 10°. The

~effects on n of a main beam at some location other than

x = Q, unequal element excitations, non-isotropic elements,
and signal bandwidth are all negligible (to_within an order
of magnitude) for this case (Ref 35:171-184). ; |

Eq (98) overlooked a minor problem. Since B itself
has a variance and the samples are not infinitely close

together (continuous), the actual peak side lobe is higher

than B with probability one, i.e. U; may not be piecewise
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constant over a coherence distance. Ref 19 ignores the
error and Ref 35 presents a rather obtuse derivation of
an additive correction factor which turns out to be 1 + %,
so that the actual peak side lobe is given by B + 1 + %.
For the optical wavelengths, the correction factor is neg-
ligible, since n = 10° and Eq (98a) gives B = 12 (for a
confidence level of 50%) and B = 14 (for B = 90%). Thus,
the correction affects the actual peak side lobe less than
about 10% numerically, and in fact merely represents a
small decrease in the confidence level B. Since B is the

ratio of the peak side lobe to the average side lobe, the

ratio of the peak side lobe to the main beam is given by

o'B
h =g
1
= - % In 1--8n

The primary restriction on Eq (100) results from the
original assumption that the field U; had real and imaginary
parts that were asymptotically jointly gaussian. Ref 19:262

notes that this approximation is valid for %ET << 1. A plot

of N versus h is given in Fig. 13 for q = 1,5 where L = 1092

and B = 90%. The restriction %g; << 1 is shown by a dotted

line. Left of this line, the confidence level may be less

than 90%. The figure is very nearly the same as that in
Ref 19:262. The figure indicates that as L(q) increases,
the peak side lobe is also likely to increase, but not a

great deal relatively.
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Fig. 13. Peak Side Lobe Level Versus N.

Fig. 13 also indicates a very striking result. For a
reasonable peak side lobe level of -20 db,a 1 m array (qxz5)
must consist of about 1400 lasers. As noted earlier, these
probability statements are existence statements for an
infinitely large class of arrays whose elements are positioned
according to some underlying probability density. Therefore,
there are at least some arrays which have about 1400 lasers
whose side lobes are less than -20 db with a confidence level
of about 907%. This is not true for most of the arrays in the
class. Furthermore, this is not a design procedure for a
specifié array. Finding an array with the above performance
is by no means a trivial task (analytically, it is totally

intractable). However, even disregarding the difficulty of
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designing the appropriate array, there is the not inconsid-

erable problem of actually building it.




V. Conclusion

" Summary of Resulté

In the first section, classical, amplitude stabilized
fields were used to descriﬁe'the laser output. The fields
were considered complex, coherence separable random processes.
The Huygeas-Fresnel principle was used to propagate the field,
and the far field (Fraunhofer condition) was considered. The
general result for the superposition of N fields contained
all of the cases discussed, and the time-space duality of the
calculations was evident. When coherent detection was used
to measure a field at any space-time point, the resulting
measured phases-of the fiel<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>